
API Development Manual:
AMTFaceLite SDK For Windows

API Version: 12.0

Doc Version: 1.0

June 2022

Thank you for choosing our product. Please read the instructions

carefully before operation. Follow these instructions to ensure that the

product is functioning properly. The images shown in this manual are for

illustrative purposes only.

For further details, please visit our Company’s website

www.armatura.us.

http://www.armatura.us/

AMTFaceLite SDK For Windows API Development Manual

P a g e | 1

Copyright © 2022 ARMATURA LLC. All rights reserved.

Without the prior written consent of ARMATURA LLC. no portion of this manual can be copied or

forwarded in any way or form. All parts of this manual belong to ARMATURA and its subsidiaries

(hereinafter the "Company" or "ARMATURA").

Trademark

 is a registered trademark of ARMATURA LLC. Other trademarks involved in this

manual are owned by their respective owners.

Disclaimer

This manual contains information on the operation and maintenance of the ARMATURA product.

The copyright in all the documents, drawings, etc. in relation to the ARMATURA supplied product

vests in and is the property of ARMATURA. The contents hereof should not be used or shared by

the receiver with any third party without express written permission of ARMATURA.

The contents of this manual must be read as a whole before starting the operation and maintenance

of the supplied product. If any of the content(s) of the manual seems unclear or incomplete, please

contact ARMATURA before starting the operation and maintenance of the said product.

It is an essential pre-requisite for the satisfactory operation and maintenance that the operating and

maintenance personnel are fully familiar with the design and that the said personnel have received

thorough training in operating and maintaining the machine/unit/product. It is further essential for the

safe operation of the machine/unit/product that personnel have read, understood, and followed the

safety instructions contained in the manual.

In case of any conflict between terms and conditions of this manual and the contract specifications,

drawings, instruction sheets or any other contract-related documents, the contract

conditions/documents shall prevail. The contract specific conditions/documents shall apply in priority.

ARMATURA offers no warranty, guarantee, or representation regarding the completeness of any

information contained in this manual or any of the amendments made thereto. ARMATURA does

not extend the warranty of any kind, including, without limitation, any warranty of design,

merchantability, or fitness for a particular purpose.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 2

ARMATURA does not assume responsibility for any errors or omissions in the information or

documents which are referenced by or linked to this manual. The entire risk as to the results and

performance obtained from using the information is assumed by the user.

ARMATURA in no event shall be liable to the user or any third party for any incidental,

consequential, indirect, special, or exemplary damages, including, without limitation, loss of

business, loss of profits, business interruption, loss of business information or any pecuniary loss,

arising out of, in connection with, or relating to the use of the information contained in or referenced

by this manual, even if ARMATURA has been advised of the possibility of such damages.

This manual and the information contained therein may include technical, other inaccuracies, or

typographical errors. ARMATURA periodically changes the information herein which will be

incorporated into new additions/amendments to the manual. ARMATURA reserves the right to add,

delete, amend, or modify the information contained in the manual from time to time in the form of

circulars, letters, notes, etc. for better operation and safety of the machine/unit/product. The said

additions or amendments are meant for improvement /better operations of the machine/unit/product

and such amendments shall not give any right to claim any compensation or damages under any

circumstances.

ARMATURA shall in no way be responsible (i) in case the machine/unit/product malfunctions due to

any non-compliance of the instructions contained in this manual (ii) in case of operation of the

machine/unit/product beyond the rate limits (iii) in case of operation of the machine and product in

conditions different from the prescribed conditions of the manual.

The product will be updated from time to time without prior notice. The latest operation procedures

and relevant documents are available on http://www.armatura.com.

If there is any issue related to the product, please contact us.

ARMATURA Headquarters

Address 190 Bluegrass Valley Pkwy,

 Alpharetta, GA 30005, USA.

For business-related queries, please write to us at: info@armatura.us.

To know more about our global branches, visit www.armatura.us.

http://www.zkteco.com/
http://www.zkteco.com/

AMTFaceLite SDK For Windows API Development Manual

P a g e | 3

About the Company

ARMATURA is a leading global developer and supplier of biometric solutions which incorporate the

latest advancements in biometric hardware design, algorithm research & software development.

ARMATURA holds numerous patents in the field of biometric recognition technologies. Its products

are primarily used in business applications which require highly secure, accurate and fast user

identification.

ARMATURA biometric hardware and software are incorporated into the product designs of some of

the world’s leading suppliers of workforce management (WFM) terminals, Point-of-Sale (PoS)

terminals, intercoms, electronic safes, metal key lockers, dangerous machinery, and many other

products which heavily rely on correctly verifying & authenticating user’s identity.

About the Manual

This manual introduces the operations of AMTFaceLite SDK For Windows.

All figures displayed are for illustration purposes only. Figures in this manual may not be exactly

consistent with the actual products.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 4

Document Conventions

Conventions used in this manual are listed below:

GUI Conventions

For Software

Convention Description

Bold font Used to identify software interface names e.g. OK, Confirm, Cancel.

>
Multi-level menus are separated by these brackets. For example, File >

Create > Folder.

For Device

Convention Description

< > Button or key names for devices. For example, press <OK>.

[]
Window names, menu items, data table, and field names are inside square

brackets. For example, pop up the [New User] window.

/
Multi-level menus are separated by forwarding slashes. For example,

[File/Create/Folder].

Symbols

Convention Description

This represents a note that needs to pay more attention to.

The general information which helps in performing the operations faster.

 The information which is significant.

 Care taken to avoid danger or mistakes.

The statement or event that warns of something or that serves as a

cautionary example.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 5

Table of Contents

1 INTRODUCTION .. 6

1.1 OVERVIEW OF THE SDK... 6

1.2 FEATURE OF THE SDK ... 7

1.3 ADVANTAGE OF THE SDK .. 8

2 TECHNICAL SPECIFICATIONS ... 9

2.1 ARCHITECTURE .. 9

2.1.1 SDK FILES ... 9

2.1.2 DEVELOPMENT SETUP ... 10

2.1.3 USB INFORMATION ... 10

2.2 PROGRAMMING GUIDE ... 10

2.2.1 REGISTRATION PROCESS .. 10

2.2.2 VERIFICATION/IDENTIFICATION PROCESS .. 13

3 SDK INTERFACE DESCRIPTION .. 16

3.1 NIR FACE TEMPLATE FORMAT DESCRIPTION ... 16

3.2 NEAR-INFRARED FACE INTERFACE ... 16

3.2.1 AMTNIRFACE.DLL .. 16

APPENDIX ... 34

APPENDIX 1: ERROR CODE ... 34

APPENDIX 2: GLOSSARY ... 35

AMTFaceLite SDK For Windows API Development Manual

P a g e | 6

1 Introduction

This document will provide with basic SDK development guide and technical background to help

with better use of our AMTFaceLite SDK document. From the perspective of a developer, the key

design objective of this SDK is its compatibility and ease of execution.

This development manual contains the product development documentation for developers that

describes the functions provided by the SDK and its related usage, which eases the development

environment.

The following sections explain all the required information on how to perform and integrate

AMTFaceLite SDK.

1.1 Overview of the SDK

AMTFaceLite SDK is a wrapper of Armatura near-Infrared light face recognition algorithm. It is an

excellent near-infrared face recognition algorithm based on the indoor face recognition algorithm,

developed to resist complex ambient light and the needs of large capacity recognition. In the case of

ensuring a very low FRR, the algorithm focuses on improving the wide adaptation to the

environment and user habits, thereby greatly improving the robustness and success rate of face

recognition.

The SDK provides the rich interfaces to access the algorithm’s functionalities for face recognition

process, including face detection, feature extraction, liveness detection, template creation, and face

identification.

The FaceLite SDK utilizes the widely supported libusb API for face module communication, supports

common-used operation systems, and frees the developers from intimidating hardware operations.

It is a developer-friendly toolkit to empower the biometric features on the software application with

easy pickup.

The simple library components aid in supporting and enhancing the security requirements through

biometric facial recognition which avoids spoofing and has been widely used in various systems,

including attendance, security, video monitoring, and so on.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 7

1.2 Feature of the SDK

▪ Face Focusing Method to Enhance Image Quality:

The FaceLite algorithm takes face focusing method to enhance the image quality which

significantly reduces the facing-light and back-light impact on the captured image.

▪ Stable Face Features Boost Recognition Accuracy and Performance

The FaceLite algorithm can detect different levels (18,40 or 120) of key face feature points

and their positions in milliseconds, such as eyes, lips, nose tips, and contours. Such key

points are stable face features and can be recognized from the deliberated and unintentional

variations in the captured face images. It boosts the algorithm to achieve face recognition

accuracy and performance.

▪ Multi-dimensional Face Feature Template for Robust Face Recognition:

The FaceLite algorithm calculates multi-dimensional features from the collected multiple

templates (5 consecutive templates) to generate one enrollment template which minimizes

the side impact from hats, scarves, dark glasses, or other attachments during the registration

process. This improves the recognition robustness.

▪ Liveness Detection:

The FaceLite algorithm can effectively detect a fake face from a digital photo, printed color

photo, Black & White face image, or a recorded video of a live face.

▪ High Recognition Performance

Based on the stable face features, the FaceLite algorithm takes the multi-level matching

mode with optimized classifier parameters to match the candidate in the large-volume

template library within a second.

▪ Automatic Update the Template Library:

The FaceLite algorithm tracks face features and automatically updates the face template into

the template library, such an adaptive approach can keep the template stay with the user’s

current appearance and lower the rejection rate caused by changes in the user's

appearance and hairstyle.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 8

▪ Algorithm Integrity:

Combined with Armatura near-infrared light face module, the FaceLite algorithm ensures the

quality of images by maintaining data integrity for a genuine and accurate image process.

1.3 Advantage of the SDK

• Easy to use by other developers.

• Thorough documentation to explain how your code works.

• Enough functionality so it adds value to other applications.

• Does not negatively impact.

• Plays well with other SDKs.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 9

2 Technical Specifications

Development Language

This SDK provides a standard Win32 API interface and supports C, C++, and C# language

development.

Platform Requirements

This SDK supports 32-bit/64-bit operating systems with Windows XP SP3 or higher.

Technical Parameters

Parameter Description

Template size < 29 KB

Gesture adaptability Yaw ≤25, Pitch ≤25, Roll ≤25

Face detection < 80 ms

Face feature extraction < 100 ms

Face verification/identification (1:6000) < 100 ms

Number of face templates supported 6000

Accuracy FRR = 98.6% when FAR = 0.001%

The preceding algorithm capability indicators are all measured based on an actual image data

set (resolution of 480 x 640), 8GB memory, and quad-core Inter(R) Core(TM) i5-3210M CPU

@2.5GHz processor.

2.1 Architecture

2.1.1 SDK Files

Copy the following files (DLL directory) to the Windows terminal.

File Name Description

face.dat Algorithm model file

THFaceImage.dll Dynamic link library for the algorithm interface

THFaceLive.dll Dynamic link library for the algorithm interface

THFacialPos.dll Dynamic link library for the algorithm interface

AMTFaceLite SDK For Windows API Development Manual

P a g e | 10

AMTInfraredFace.dll Low-level algorithm interface dynamic library

AMTNIRFace.dll Dynamic library of near-infrared face interface

AMTFaceCap.dll

Dynamic link library for underlying interfaces of face capturing
process.

libamtsensorcore.dll

Dynamic link library for underlying communication interfaces of the
device

sqlite3.dll

Dynamic link library containing the command-line tools used for
managing the SQLite database

2.1.2 Development Setup

SDK dynamic library files can be copied and installed directly

Before installing AMTFaceLite SDK, please make sure that the operating system, system

configuration, or Windows portable terminal device meets the requirements for software

operation.

Copy related files such as AMTNIRFace.dll, AMTInfraredFace.dll, AMTFaceCap.dll,

THFacialPos.dll, THFaceLive.dll, THFaceImage.dll, face.dat, libamtsensorcore.dll, sqlite3.dll

and other related files from the AMTFaceLite SDK to the path specified by the user.

2.1.3 USB Information

USB dongle

The AMTNIRFACE12.0 algorithm uses a dongle for user authorization. The dongle is usually

built into face recognition devices. Therefore, you do not need an external dongle.

2.2 Programming Guide

This section describes the key processes of face recognition to help developers understand the

face registration and verification/identification processes implemented by the

AMTNIRFACE12.0 algorithm.

2.2.1 Registration Process

In the face registration process, the face recognition application must capture five

AMTFaceLite SDK For Windows API Development Manual

P a g e | 11

verification/identification templates and merge them into a registered template.

For more details about different types of templates, see the SDK Interface Description.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 12

Registration Process Flow Using 1:N Identification

AMTFaceLite SDK For Windows API Development Manual

P a g e | 13

Process Description:

• The application calls the face capturing SDK to capture the face images.

• Once the face images are captured successfully, the application calls the extract function

AMTNIRFace_ExtractFromGrayscaleData to extract the templates.

• Then the application calls the AMTNIRFace_DBIdentify 1:N function to determine whether

the current extracted template has been registered.

• And, if it has been registered, the application returns a message and ends the registration

process.

• And if less than five templates have been captured, the application continues to capture

the next template.

• After capturing five templates, the application merges the templates into a registered

template. If the registration fails, the application returns a message and ends the

registration process.

• If the registration succeeds, the application calls the dbAdd function to add the registered

template to the database.

• And thus, ends the process.

2.2.2 Verification/Identification Process

1:N Identification Process

To implement 1:N face identification, it is required to add all the registered templates to the

database. It is recommended to call the AMTNIRFace_DBAdd function to add all registered

templates to the database after successful algorithm initialization.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 14

Identification Process Flow

AMTFaceLite SDK For Windows API Development Manual

P a g e | 15

Process Description

• The application calls the face capturing SDK to capture the face images.

• After the face image is captured successfully, the application calls the

AMTNIRFace_ExtractFromGrayscaleData function to extract a template.

• The application calls the AMTNIRFace_DBIdentify 1:N function to compare the current

template with registered templates.

• And once the registered template is identified, the application ends the registration

process.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 16

3 SDK Interface Description

3.1 NIR Face Template Format Description

Template type Data length Description

Verification/Identification

template
21072 bytes

Pre-registered or verification/identification

template

Registered template 28992 bytes Registered or Registration template

3.2 Near-Infrared Face Interface

AMTNIRFace.dll dynamic library is a dynamic library of Near Infrared Face Interface, mainly

used for extraction, registration, and verification/identification of near-infrared face templates.

3.2.1 AMTNIRFace.dll

Function List

Function Interface Description

AMTNIRFace_Version Gets the SDK version number

AMTNIRFace_Init Initializes the algorithm resources

AMTNIRFace_Terminate Releases the algorithm resources

AMTNIRFace_ExtractFromGrayscaleData
Extracts a verification/identification template from

256-gray scale pixel data

AMTNIRFace_GetTemplateQlt
Gets the quality of a face verification/identification

template

AMTNIRFace_Verify Performs the 1:1 face verification

AMTNIRFace_DBVerifyByID Performs 1:1 verification with the specified faceID

AMTNIRFace_MergeRegTemplate
Merges the verification/identification templates into

a registered templates

AMTNIRFace_DBAdd Adds the registered template to the database

AMTNIRFace_DBDel
Removes the specified face template from the

database

AMTNIRFace_DBClear Clears the database

AMTNIRFace_DBCount Gets the total number of face templates stored in

AMTFaceLite SDK For Windows API Development Manual

P a g e | 17

the database

AMTNIRFace_DBIdentify Performs 1:N face Identification

AMTNIRFace_GetFacePosition
Gets the position coordinates of the near-infrared

face

AMTNIRFace_DetectAndGetPos Face detection and face position acquisition

AMTNIRFace_GetLiveness Face live detection

AMTNIRFace_Version

Function Syntax

int __stdcall AMTNIRFace_Version(char* version, int* size);

Description

Gets the SDK version number.

Parameters

Parameter Description

version
Out: Returns the version number (recommended to pre-

allocate 128 bytes, enough to use)

size
In: Version memory size (bytes)

Out: Returns the actual version length

Returns

See the Error Code

Example

char szVer[128] = {0};

int len = 128;

ret = AMTNIRFace_Version(szVer,&len);

......

Remarks

Click here to view the Function List.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 18

AMTNIRFace_Init

Function Syntax

int __stdcall AMTNIRFace_Init(void** context);

Description

Initializes the algorithm resources.

Parameters

Parameter Description

context Out: Algorithm instance pointer

Returns

See the Error Code

Example

......

void* pInstanceContext = NULL;

ret = AMTNIRFace_Init(&pInstanceContext);

......

Remarks

Click here to view the Function List.

AMTNIRFace_Terminate

Function Syntax

int __stdcall AMTNIRFace_Terminate(void* context);

Description

Releases the algorithm resources.

Parameters

AMTFaceLite SDK For Windows API Development Manual

P a g e | 19

Parameter Description

context In: Algorithm instance pointer

Returns

See the Error Code

Remarks

Call this function at the end of the program.

Click here to view the Function List.

AMTNIRFace_ExtractFromGrayscaleData

Function Syntax

int __stdcall AMTNIRFace_ExtractFromGrayscaleData

 (

 void* context,

 unsigned char* rawImage,

 int width,

 int height,

 unsigned char* verTemplate,

 int *cbVerTemplate,

 int expmode,

 int *exp

);

Description

Extracts a verification/identification template from 256-gray scale pixel data.

Parameters

Parameter Description

context In: Algorithm instance pointer

rawImage In: Grayscale image bit depth 8-bit original image data (256-gray

AMTFaceLite SDK For Windows API Development Manual

P a g e | 20

scale pixel data)

width In: Image width

height In: Image height

verTemplate Out: Returns the face verification/identification template data

cbVerTemplate

In: vertmp memory allocation size

Out: Returns the actual data length of verTemplate

verification/identification template

expmode In: Exposure mode (0 for registration, 1 for recognition)

exp Out: Exposure value of the camera to be adjusted

Returns

See the Error Code

Remarks

• It is recommended to pre-allocate 21072 bytes for face verification/identification

template data.

• This interface is a non-thread safe interface.

Click here to view the Function List.

AMTNIRFace_GetTemplateQlt

Function Syntax

int __stdcall AMTNIRFace_GetTemplateQlt

 (

 void* context,

 unsigned char* verTemplate,

 int* score

);

Description

Gets the quality of the face verification/identification template (supports only the

verification/identification template, and not the registration template generated by

AMTNIRFace_MergeRegTemplate).

AMTFaceLite SDK For Windows API Development Manual

P a g e | 21

Parameters

Parameter Description

context In: Algorithm face instance pointer

verTemplate In: Face verification/identification template data

score

Out: Return the quality score of the corresponding face template

(score

range: 0 to 255)

Returns

See the Error Code

Remarks

• This interface is for reference only, there may be errors.

• Face quality score, the recommended threshold is: 50

• verTemplate can only be the verification/identification template data.

Click here to view the Function List.

AMTNIRFace_MergeRegTemplate

Function Syntax

int __stdcall AMTNIRFace_MergeRegTemplate

 (

 void* context,

 unsigned char*verTemplates,

 int mergedCount,

 unsigned char* pMergeTemplate,

 int* cbMergeTemplate

)

Description

Combines the 5-verification/identification template data into one registered template data.

Parameters

AMTFaceLite SDK For Windows API Development Manual

P a g e | 22

Parameter Description

context In: Algorithm face instance pointer

verTemplates

In: Verification/Identification template data (Supports 5 templates

that are required to be merged into a one-dimensional array, it is

recommended to pass only 5 verification/identification templates)

mergedCount

Out: Number of verification/identification template data (It is

recommended to transfer 5 verification/identification templates,

and only supports up to 5)

pMergeTemplate

Out: Registration template synthesized by multiple

verification/identification templates (the generated template is

used when AMTNIRFace_DBAdd is added)

cbMergeTemplate
In: pMergeTemplate memory allocation size

Out: Returns the actual pMergeTemplate data length

Returns

See the Error Code

Remarks

• The face registration template suggests pre-allocating 28992 bytes.

• This interface is a non-thread safe interface.

Click here to view the Function List.

AMTNIRFace_Verify

Function Syntax

int __stdcall AMTNIRFace_Verify

 (

 void* context,

 unsigned char* regTemplate,

 unsigned char* verTemplate,

 int* score

);

Description

Performs the 1:1 face verification.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 23

Parameters

Parameter Description

context In: Algorithm face instance pointer

regTemplate In: Registration template data

verTemplate In: Verification template data

score Out: Returns the corresponding verification score

Returns

See the Error Code

Remarks

• Verification score range: 1~1000.

• Verification score threshold recommended value: 575.

• The interface score returns the corresponding verification score value, and the

application layer determines the verification threshold.

Click here to view the Function List.

AMTNIRFace_DBVerifyByID

Function Syntax

int __stdcall AMTNIRFace_DBVerifyByID

 (

 void *context,

 const unsigned char*verTemplate,

 const char *faceID,

 int *score,

 bool IsAdapt,

 unsigned char*adaptFeature,

 int *cbAdaptFeature

);

Description

AMTFaceLite SDK For Windows API Development Manual

P a g e | 24

Performs the 1:1 verification with the specified faceID.

Parameters

Parameter Description

context In: Algorithm face instance pointer

verTemplate In: Verification template data

faceID In: The specified face ID

score Out: Return the corresponding verification score

IsAdapt

In: Whether the registration template needs to be updated.

true means enable self–learning

false means disable self-learning

adaptFeature

Out: Return to the registration template after learning.

It is recommended to pre-allocate 28992 bytes of memory (the

returned registration template only needs to be updated to its own

application database, and the algorithm is automatically updated

to the 1:N bottom library)

cbAdaptFeature
In: Memory size allocated by adaptFeature (number of bytes)

Out: Returns the actual length of the adaptFeature

Returns

See the Error Code

Example

int ret = -1;

int score = 0;

char szFaceID[256] = "faceid";

unsigned char *adaptTemplate = new unsigned char[28992];

memset(adaptTemplate,0,28992);

int cbAdaptTemplate = 28992;

ret = AMTNIRFace_DBVerifyByID(context,

verTemplate,szFaceID,&score,true,adaptTemplate,&cbAdaptTemplate);

if(adaptTemplate)

{

delete [] adaptTemplate;

adaptTemplate = NULL;

AMTFaceLite SDK For Windows API Development Manual

P a g e | 25

}

Remarks

• Verification score range: 1~1000.

• The recommended minimum score is 575.

• If the length of the self-learning registration template returned by cbAdaptFeature is

equal to 0, then it means that the self-learning registration template is not

successfully generated.

• If the returned length of the self-learning registration template is greater than 0, then

it means that the self-learning registration template is successfully obtained and

automatically updated to the 1:1 library.

• The interface score returns the corresponding verification score value, and the

application layer determines the verification threshold.

Click here to view the Function List.

AMTNIRFace_DBAdd

Function Syntax

int __stdcall AMTNIRFace_DBAdd(void* context, char* faceID);

Description

Adds a registered template to the database.

Parameters

Parameter Description

context In: Algorithm face instance pointer

faceID In: Face ID

Returns

See the Error Code

Remarks

AMTFaceLite SDK For Windows API Development Manual

P a g e | 26

• This interface is a non-thread safe interface.

Click here to view the Function List.

AMTNIRFace_DBDel

Function Syntax

int __stdcall AMTNIRFace_DBDel(void* context, char* faceID);

Description

Removes the specified face template from the database.

Parameters

Parameter Description

context In: Algorithm face instance pointer

faceID In: Face ID

Returns

See the Error Code

Remarks

• This interface is a non-thread safe interface.

Click here to view the Function List.

AMTNIRFace_DBClear

Function Syntax

int __stdcall AMTNIRFace_DBClear(void* context);

Description

Clears the database.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 27

Parameters

Parameter Description

context In: Algorithm face instance pointer

Returns

See the Error Code

Remarks

• This interface is a non-thread safe interface.

Click here to view the Function List.

AMTNIRFace_DBCount

Function Syntax

int __stdcall AMTNIRFace_DBCount(void* context, int* count);

Description

Gets the total number of face templates stored in the database.

Parameters

Parameter Description

context In: Algorithm face instance pointer

count
Out: Returns the total number of templates stored in the high-

speed buffer

Returns

See the Error Code

Remarks

• This interface is a non-thread safe interface.

Click here to view the Function List.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 28

AMTNIRFace_DBIdentify

Function Syntax

int __stdcall AMTNIRFace_DBIdentify

 (

 void* context,

 const unsigned char*verTemplate,

 char *faceID,

 int* score,

 bool IsAdapt,

 unsigned char*adaptFeature,

 int *cbAdaptFeature

);

Description

Performs the 1:N face identification.

Parameters

Parameter Description

context In: Algorithm face instance pointer

verTemplate In: Identification templates

faceID Out: Returns the face ID

score Out: Returns the face identification score

IsAdapt

In: Whether the registration template needs to be updated.

true Means enable self–learning

false
This means disable self -

learning

adaptFeature

Out: Returns to the registration template after learning.

It is recommended to pre-allocate 28992 bytes of memory (the

returned registration template only needs to update to its own

application database, and the algorithm is automatically updated

to the 1:N library)

cbAdaptFeature
In: Memory size allocated by adaptFeature (number of bytes)

Out: Returns the actual length of the adaptFeature

AMTFaceLite SDK For Windows API Development Manual

P a g e | 29

Returns

See the Error Code

Example

int ret = -1;

int score = 0;

char szFaceID[256] = {0};

unsigned char *adaptTemplate = new unsigned char[28992];

memset(adaptTemplate,0,28992);

int cbAdaptTemplate = 28992;

ret = AMTNIRFace_DBIdentify(context,

verTemplate,szFaceID,&score,true,adaptTemplate,&cbAdaptTemplate);

if(adaptTemplate)

{

delete [] adaptTemplate;

adaptTemplate = NULL;

}

Remarks

• Identification score range: 1~1000.

• The recommended minimum score is 585.

• This interface is a non-thread safe interface.

• If the length of the self-learning registration template returned by cbAdaptFeature

is equal to 0 then it means that the self-learning registration template is not

successfully generated.

• If the returned length of the self-learning registration template is greater than 0,

then it means that the self-learning registration template is successfully obtained

and automatically updated to the 1:N Bottom library.

• The interface score returns the corresponding identification score value, and the

application layer determines the identification threshold.

Click here to view the Function List.

AMTNIRFace_GetFacePosition

AMTFaceLite SDK For Windows API Development Manual

P a g e | 30

Function Syntax

int __stdcall AMTNIRFace_GetFacePosition

 (

 void* context,

 int *positions,

 int count

);

Description

Gets the position coordinates of the near-infrared face.

Parameters

Parameter Description

context In: Algorithm face instance pointer

positions Out: Face coordinates

count
In: positions memory allocation size (it is recommended to

allocate 12 int data)

Returns

See the Error Code

Remarks

• positions return value description:

• positions[0]~positions[7]Four coordinate points of the rectangular frame of the

near-infrared face: p0.x p0.y p1.x p1.y p2.x p2.y p3.x p3.y. (The coordinates of the

upper left corner of the rectangular frame of the face are arranged clockwise).

positions[8] X coordinate of the left eye

positions[9] Y coordinate of the left eye

positions[10] X coordinate of the right eye

positions[11] Y coordinate of the right eye

Click here to view the Function List.

AMTNIRFace_DetectAndGetPos

AMTFaceLite SDK For Windows API Development Manual

P a g e | 31

Function Syntax

int __stdcall AMTNIRFace_DetectAndGetPos

 (

 void* context,

 unsigned char*grayIr,

 unsigned char* bgrColor,

 int width,

 int height,

 int *yaws,

 int *pitchs,

 int*rolls,

 int *points,

 int len

)

Description

Face detection and face position acquisition.

Parameters

Parameter Description

context In: Algorithm face instance pointer

grayIr In: Original image data with 8-bit grayscale image bit depth.

bgrColor In: Original image data with a 24-bit BGR image bit depth

width In: Image width

height In: Image height

yaws

Out:

yaws[0] is the infrared face yaw value

yaws[1]
is the visible light face yaw value (allocate 2 arrays of

int type length)

pitchs

Out:

pitchs[0] is the infrared face pitch value

pitchs[1]
is the visible light face pitch value (allocating 2 arrays

of int type length)

rolls Out:

AMTFaceLite SDK For Windows API Development Manual

P a g e | 32

rolls[0] is the infrared face roll value

rolls[1]
is the visible light face roll value (allocate 2 arrays of

int type length)

points

Out:

points[0]~points[7]

Four coordinate points of the rectangular

frame of near

infrared face

points[8]~points[15]

Four coordinate points of the rectangular

frame of near

infrared face

The four coordinate points p0.x p0.y p1.x p1.y p2.x p2.y p3.x p3.y

of the rectangular frame of the face are arranged in order (from

the coordinates of the upper left corner of the rectangular frame of

the face are arranged

clockwise)

len In: Points array size, allocate 16 arrays of int type length

Returns

See the Error Code

Remarks

• This interface is a non-thread safe interface

Click here to view the Function List.

AMTNIRFace_GetLiveness

Function Syntax
int __stdcall AMTNIRFace_GetLiveness

 (

 void* context,

 unsigned char*grayIr,

 unsigned char* bgrColor,

 int width,

AMTFaceLite SDK For Windows API Development Manual

P a g e | 33

 int height,

 float* fScores

)

Description

Face live detection.

Parameters

Parameter Description

context In: Algorithm face instance pointer

grayIr In: Original image data with 8-bit grayscale image bit depth.

bgrColor In: Original image data with a 24-bit BGR image bit depth.

width In: Image width

height In: Image height

fScores

Out: Liveness score

When the binocular is alive (fScores[0] is the infrared live value;

fScores[1] is the visible light live value)

Returns

See the Error Code

Remarks

• This interface is a non-thread safe interface.

• You must call the AMTNIRFace_DetectAndGetPos interface before calling this

interface.

• Recommended liveness threshold is 0.7

Click here to view the Function List.

AMTFaceLite SDK For Windows API Development Manual

P a g e | 34

Appendix

Appendix 1: Error Code

Error Code Description

0 Successful operation

-1 Image size conversion error, face detection failure

-3 No face detected

-5 Failed to synthesize registration template

-8 Algorithm library memory allocation error

-15 Feature extraction failed

-103 No such faceid in the database (no such faceid in the cache)

-105
The feature of the faceid in the database is invalid (in the high-speed

buffer)

-106 Duplicate added faceid

-200 Database is full (cache area)

-1000 Dongle error

-1001 Algorithm library initialization failed

-1002 Algorithm library is not initialized

-1003 Invalid handle

-1004 Null pointer

-1005 The interface is not supported

-1006 Invalid parameter

-1007 Face detection failed during live detection

-1008 Not enough memory allocated

-1012 The face index is invalid

-1015 Failed to allocate memory

-1020 Failed to load algorithm library

-1021 Failed to initialize visible light face detection engine

-1023 Failed to initialize visible light live detection engine

-1024
The algorithm did not detect the near-infrared face before the live

detection

-1025 The algorithm did not detect the visible light face before the live detection

AMTFaceLite SDK For Windows API Development Manual

P a g e | 35

Appendix 2: Glossary

The following definitions will help you understand basic functions of a near-infrared face

recognition application and complete integrated development of such an application.

Verification/Identification template

Verification/Identification templates are used for 1:1 or 1:N face verification/identification or

merged into a registered template for face registration.

1:1 face verification

1:1 face verification, also called face verification, is a process of verifying whether a user has a

valid identity based on the user ID and face template or determining whether a registered

template and several verification templates are extracted from the same face.

1:N face identification

1:N face identification, also called face recognition, is a process of determining whether a user

exists in the system based on the face of the user, without the user ID. Specifically, the

application looks up the database of registered face templates based on the input face template

and returns the name of the user meeting the threshold, face similarity degree, and other

related information.

Registered template

The face registration template returned by AMTNIRFace_MergeRegTemplate, or the self-

learning registration template returned by AMTNIRFace_DBIdentify and

AMTNIRFace_DBVerifyByID.

Registered face

The face recognition module/collector captures five face images of the same user to extract

verification/identification templates, merges the verification/identification templates into a

registered template, and then loads it to the backend database as a registered face for

subsequent face recognition.

190 Bluegrass Valley Pkwy,

Alpharetta, GA 30005, USA

E-mail: info@armatura.us

www.armatura.us

Copyright © 2022 ARMATURA LLC. All Rights Reserved.

